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Figure 2. (a) Wavelength dependence of photodissociation. The lower two 
plots are the dissociation (-In P/Po, where P and PQ are the parent ion 
signals, respectively, with and without light) for visible light only and for 
combined visible and IR irradiation (left-hand scale). The upper plot 
(right-hand scale) is the ratio of these (pressure 1.5 X 10~7Torr). (b) Plot 
of the ratio of two-laser photodissociation to visible-laser-only dissociation 
as a function of IR laser power (pressure 5 X 10"8 Torr). 

absorbs the first visible photon to put it 2 eV or more above the 
ground state, the IR pumping slows its subsequent relaxation 
and maintains it in the region of pumping/relaxation bal­
ance.15 The probability of the ion remaining excited long 
enough for absorption of another visible photon is thus greatly 
increased, enhancing the dissociation rate. 

Quantitative computer modeling of the two-laser photo­
dissociation process suggests that the pressure dependence, 
visible intensity dependence, visible pulse rate dependence, and 
IR intensity dependence can be successfully accounted for 
within this model. These comparisons will be described in a 
fuller publication. The kinetic model applied here, involving 
sequential photon absorption and stochastic relaxation, is not 
fundamentally new, being a variety of the master-equation 
formalism.16'17 However, it seems useful to point out that, at 
modest IR light intensities, this model leads to a (markedly 
non-Boltzmann) population of ions in dynamic equilibrium in 
an energy region part way between the ground state and the 
dissociation threshold. 

The implications of this experiment for study of the prop­
erties of vibrational^ excited species and vibrational relaxation 
processes are interesting. Steady low-level IR pumping of 
species like C6H5I+ results in a stable steady-state population 
of ions with large and fairly uniform vibrational excitation. 
Two-photon visible photodissociation provides a successful 
probe for exploring some of the characteristics and dynamic 
behavior of these vibrationally excited ions. We are pursuing 
this approach in more depth and for other ions. 
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Exceptional Reactivity of the 
Bicyclo[2.2.1]heptene Double Bond 

Sir: 

Norbornene shows two exceptional characteristics in its 
reactivity: high preference for exo reaction and increased rate 
constants in all addition reactions including cycloadditions. 

The exo selection was ascribed to a favorable transition state 
conformation (torsional effect)1 or to a steric hindrance of endo 
attack.2 The size of exo/endo ratios render both explanations 
doubtful. Inagaki, Fujimoto, and Fukui3 applied the "orbital 
mixing rule" to norbornene and deduced "nonequivalent or­
bital extension", i.e., greater exo than endo lobes for the x HO; 
this change of hybridization (see formula 1) was made re­
sponsible for preferential exo addition of electrophilic re­
agents.3 

The increased reactivity of norbornene as a dienophile or 
dipolarophile compared with simple cycloalkenes was inter­
preted by the release of ring strain in the transition state.4 The 
heat of hydrogenation of norbornene exceeds that of cyclo-
hexene by 6 kcal mol-1.5 The 1,3-dipolar cycloadditions of 
benzonitrile oxide,6 diazomethane,7 and phenyl azide8 to 
norbornene are 6100-, 5400-, and 5700-fold faster than those 
to cyclohexene, corresponding to AAG* = 4.7-5.1 kcal mol-1. 
On the other hand, in the last decade evidence for early tran­
sition states of concerted cycloadditions has accumulated,9-11 

i.e., only a fraction of the 6 kcal mol-1 (roughly the difference 
between the strain energies of norbornene and norbornane) can 
be released in the transition state. 
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Table I. Heats of Formation (AWf0) and Strain Energies of Cycloalkenes and Cycloalkanes" 

cycloalkene cycloalkane 
exptl calcd exptl calcd 
A//f° A//f° strain AHf° AH{° strain A strain 

cyclohexene -1.08* -1.88 2.76 -29.50* -29.53 2.61 -0.15 
bicyclooctene 2 +4.88f +5.59 15.15 -23.75* -22.41 14.64 -0.51 
bicycloheptene 1 +20.6rf +19.40 23.20 -12.42* -12.84 18.46 -4.74 
bicyclohexene 3 +51.41 49.45 +13.95 39.49 -9.96 
tricyclooctene 4 +49.86 52.82 +13.45 43.91 -8.91 

" In kcal mol-1 calculated with MM2. * J. D. Cox and G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds", Academic 
Press, London, 1970. c Reference 26. d Reference 5. 

Table II. Rate Constants of Concerted Cycloadditions to Cyclic and Bicyclic Alkenes" 

reaction cyclo- bicyclo- norbor- tricyclo- bicyclo-
1,3 dipoleor diene conditions* hexene octene 2 nene (1) octene4 hexene 3 

2,4,6-trimethylbenzonitrile oxide (5) CCl4,25, 106 1.2 5.7 3150 2300 2280 
4-nitrophenyl azide DMF, 50, 105 1.3 112 126 
diazomethane DMF, 25, 107 0.4 2020 960 
C-p-nitrobenzoyl-A'-phenylnitrone(6) dioxane, 25, 107 5.9 6340 6420 1010 
dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (7) dioxane, 25, IQ3 1.27 113 11700 5370 

a In L mol"1 s_1. * Solvent, 0C, Jt2. 

We have compared the cycloaddition rates of norbornene 
(1) with those of models 2-4 in which, due to symmetry, non-
equivalent orbital extension cannot occur. The results dem­
onstrate that norbornene owes its high reactivity only partially 
to the strain release; the larger portion of AAG* stems from 
a factor "x" which must be related to the contrasting symmetry 
properties of 1 compared with those of 2-4. 

P^P endo )rj<P 

1 2 

3 4 

A knowledge of the strain energies of the cycloalkenes and 
cycloalkanes is mandatory for a quantitative understanding 
of the facts. Thermochemical data on bicyclo[2.1.1]hexene 
(3)12 and the more easily accessible tricyclo[3.3.0.02,6]octene 
(4)13 are lacking, whereas bicyclo[2.2.2]octene (2)14 surpasses 
cyclohexene by 1.2 kcal mol-1 in the heat of hydrogenation.5 

The improved force field for molecular mechanics calculations, 
MM2,15 was extended to alkenes.16 The agreement between 
the calculated and experimental AHf values of cyclohexene, 
1, 2, and the corresponding saturated compounds (Table I), 
as well as several cycloalkenes and cycloalkanes containing 
four-membered rings,18 indicates that the results for 3 and 4 
in Table I are trustworthy. 

The loss of ring strain in going from the cycloalkene to the 
cycloalkane is, for bicyclohexene 3 and its tricyclic derivative 
4, twice as large as for norbornene (1). Would the rate increase 
of norbornene over cyclohexene in cycloaddition reactions 
originate only from strain release in the transition state, then 
one would expect the cycloadditions of 3 and 4 to show a value 
of AAG* which is twice as large as that for 1. 

/ r \ © © V -N N-N 

C H 3 ^ Q - C N - O ^ A / " V CH3O2^ ^Co2CH3 

5 6 7 

We have measured the rate constants for four 1,3-dipolar 
cycloadditions and one Diels-Alder reaction (with inverse 
electron demand).19 Instead of reacting 103-104 times faster 
than norbornene (1), the rate constants of bicyclohexene 3 and 
tricyclooctene 4 are similar or somewhat smaller than those 
of 1 (Table II). Thus, release of strain energy in the transition 
state can only be partially responsible for the high rate con­
stants of norbornene (1). The additional rate increase is at­
tributed to the mentioned factor "x". 

The numerical evaluation of the two factors rests on the 
simplifying assumptions that the strain release is percentage­
wise the same for the transition states of additions to 1-4, that 
the steric requirements are equal, and that the rate enhance­
ment of 3 compared with 2 fully originates from strain release 
in the transition state. For the cycloadditions of the various 
reagents of Table II, 27-49% of the AAC*, observed between 
1 and 2, are accounted for by strain release in the transition 
states of norbornene cycloadditions. Factor "x" would be re­
sponsible for 1.2-2.9 kcal mol-1 of the experimental 
AAG*2-i. 

Nonequivalent orbital extension, i.e., a change of hybrid­
ization at the olefinic carbon atoms,2021 would constitute a 
fitting interpretation of factor "x". It should be mentioned, 
however, that neither MNDO24 nor MINDO/3 calculations25 

of norbornene corroborate Fukui's effect. In a conceivable 
alternative, the phenomenon would lower the energy of the 
transition state of exo cycloaddition. 
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Spectroscopic Studies on Cobalt(II) Metallothionein: 
Evidence for Pseudotetrahedral Metal Coordination 

Sir: 

The elucidation of the spatial structure of the metal binding 
sites in metallothionein, a widely occurring metal- and sul­
fur-rich protein, is indispensable for the understanding of the 
proposed involvement of this protein in metabolism, homeo­
stasis and detoxification of zinc and other metals.1 The most 
characteristic features of mammalian metallothioneins are the 
presence of seven atoms of Zn and/or Cd and of 20 cysteinyl 
residues (Cys) per chain weight of 6100. The position of these 
residues in the amino acid sequence is extremely preserved in 
evolution.2 In contrast to most other metal thiolate proteins 
for which Cys-X-Y-Cys metal-binding (X, Y = amino acid 
residues other than Cys) sequences are typical,3 mammalian 
metallothioneins contain seven Cys-X-Cys sequences.2 

There is unambiguous evidence that all 20 cysteinyl residues 
participate in metal thiolate coordination.4a'5 From the Cys/ 
metal ratio and from complexometric titration studies and 
charge measurements, it has been inferred that the minimum 
metal binding unit of metallothionein contains as a rule three 
thiolate ligands and one or possibly more as yet unidentified 
nonprotogenic ligands. Based on sequence information and 
arguments of stoichiometry, each zinc and other bivalent metal 
ion is thought to be bound to the protein through mercaptide 
bonds with a Cys-X-Cys chelating structure and, in all but one 
case, also with an additional cysteinyl residue brought into 
position by appropriate tertiary structure folding.4b Recent ' H 
NMR studies have established the existence of a compact and 
well-defined structure of metallothionein.6 

In the present work, the coordination geometry of the metal 
binding sites of metallothionein is explored by means of optical 

Wavelength (nm) 

Figure 1. Magnetic circular dichroism (top) and absorption spectra 
(bottom) of cobalt(II) metallothionein. Protein concentration was 1.85 
X 1O-4 M in 0.1 M Tris-HCl. Measurements were performed using a path 
length of 1 cm or 1 mm. Molar absorptivity, e, and magnetic ellipticity, 
[8] M, are referred to the mol wt 6100 of the peptide chain of metallo­
thionein. The natural ellipticity has been subtracted from the total el­
lipticity measured in the magnetic field before normalizing to unit field 
(magnetic field employed: 40 kG). 

and magnetooptical spectroscopy using the cobalt(II)-sub-
stituted protein. Replacement of the metal by cobalt(II) has 
been commonly employed in the study of zinc metalloenzymes 
and metalloproteins.7 Because of their similarity, such a sub­
stitution does not measurably alter the overall protein con­
formation and often preserves the catalytic function of the 
enzyme. Cobalt(II) is particularly suitable as an environmental 
probe owing to its paramagnetism and the sensitivity of its d-d 
transitions to changes in coordination geometry.7 

Metallothionein IA was isolated from horse kidney ac­
cording to Kojima et al.4b Cobalt(II) metallothionein con­
taining 6 to 7 g-atoms of cobalt(II)/mol was prepared by the 
addition of 7 mmol of CoSO4 to 0.7 mmol of metal-free protein 
(apometallothionein) obtained by dialyzing native metallo­
thionein IA against three changes of 0.1 M HCl and subse­
quent neutralization of the sample to pH 8 by Trizma base 
[tris(hydroxymethyl)aminomethane]. All preparative steps 
and measurements were carried out under nitrogen. The excess 
of cobalt(II) ions was removed by stirring with Chelex 100 
followed by filtration. At neutral pH cobalt(II) metallo­
thionein has a green color. 

Figure 1 (bottom) shows the electronic absorption spectrum 
of cobalt(II) metallothionein. In the visible region broad bands 
with maxima at 600, 682, and 743 nm are discernible with 
molar absorptivities of « 1560, 2220, and 2170 M - 1 cm-1, 
respectively. Similar spectra have also been reported for in-
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